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INVITED ARTICLE

Liquid-crystal-droplet optical microcavities
Matjaž Humar a,b

aCondensed Matter Department, J. Stefan Institute, Ljubljana, Slovenia; bHarvard Medical School and Wellman Center for Photomedicine,
Massachusetts General Hospital, Cambridge, MA, USA

ABSTRACT
The use of liquid-crystal droplets as optical microcavities and lasers is reviewed and possible
applications are discussed. Liquid-crystal droplets are prepared by simple methods that enable
scalable production since their internal structure is formed by self-assembly. Light is trapped in
droplets due to total internal reflection on the surface due to refractive index mismatch or
because of a photonic bandgap structure in cholesteric liquid crystals (CLCs). Light confinement
gives rise to a variety of optical modes and by employing a fluorescent dye end external optical
pumping, lasing can be achieved. Liquid-crystal-droplet cavities are largely tunable by applying
an electric field or a temperature change. Such cavities can be used as temperature and chemical
sensors, and tunable light sources and filters in future integrated soft photonic circuits.
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1. Introduction

In recent years, there has been great advancement in
manufacture of micro-optical components and integrated
optic circuits made of solid-state materials. These com-
ponents are traditionally manufactured by top-down pro-
cedures such as lithography. Alternatively, liquid crystals
(LCs) could provide simpler manufacturing process of
these components by the use of self-assembly of very
complex structures [1–5] and provide large tunability
[6,7]. LCs are used for a wide variety of optical applica-
tions ranging from liquid crystal displays (LCDs) to cho-
lesteric liquid crystal (CLCs) lasers [8]. Traditionally,
however, these devices are large in size, typically the LC
is confined in one dimension to micrometre scale and
extended in the other two dimensions up to meter scale.
In order to producemicrooptical components, we need to
confine LCs to very small size. The easiest way is to make
microdroplets embedded in a liquid or solidmatrix which
gives a particular surface anchoring. An example of such

system are the polymer dispersed liquid crystals (PDLCs)
[9,10], which are mainly used for switchable windows.
The size of the droplets is usually in the order of few
micrometers, so that the scattering of light is as high as
possible. PDLCs can also be used for active optical com-
ponents such as random lasers [11–13]. In PDLCs,
usually collective optical proprieties of many droplets
combined is used, so single droplets are not regarded as
optical cavities. In order to use LC droplets as cavities,
they have to be larger than approximately 10 µm.
Methods for preparation of PDLCs such as phase separa-
tion give too small droplets and they are usually of irre-
gular shapes and densely packed which limits the use of
single droplets. In order to use liquid crystal as optical
cavities, single droplets have to be generated,manipulated
and studied. There are many studies of generation and
study of liquid crystal droplets and shells, and of the
complex configurations formed within [14,15]. Here an
overview of optical cavities in LC droplets is overviewed
and further directions are discussed.
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2. Whispering-gallery mode cavities

Whispering-gallery mode (WGM) cavities are made of a
circular or spherical transparent object such as disc,
sphere or toroid. Here we will only consider spheres. If
the refractive index of the object is greater than the
index of the outside medium, the light can be trapped
inside the sphere as a consequence of multiple total
internal reflections and circulates close to the surface.
After one circulation, if the light comes to the same
point in phase, the resonant condition is met. In general,
WGMs are solutions of Maxwell’s equations in spherical
coordinates for a dielectric sphere. The wavelengths of
the resonances are uniquely characterised by a set of
three mode numbers, the radial mode number q, the
polar mode number l, the azimuthal mode number m
and the polarisation p. The radial mode number indi-
cates the number of maxima in the radial intensity
distribution in the sphere, the polar mode number
gives the number of wavelengths for one circulation of
the light and the azimuthal mode number indicates the
inclination of the circular orbit. In sphere with uniform
distribution of refractive index, all the planes in which
the light circulates are equivalent, so the modes are
degenerate in regard to azimuthal mode number m.
However, as soon as the spherical symmetry is broken
by either deformation of the sphere or non-uniform
refractive index distribution, modes with a particular q
and l are split into modes with different m. For large
spheres (l ≫ 1) and q = 1, the approximate solutions are
given by

2πrn1 � lλ; (1)

where r is the radius of the sphere, n1 is the refractive
index of the sphere and λ is the wavelength of the
mode. Better solutions can be calculated using precise
analytical approximations [16] and exact solutions can
be calculated numerically by using spherical Bessel and
spherical Hankel functions [17].

WGMs are well known for their very high Q-factors
combined with small size. For large spheres and q = 1
the Q-factor due to radiative leaking of light caused by
the curvature can be approximated as

Q ¼ λ

Δλ
� e8r=λ n1�n2ð Þ3=2 ; (2)

where Δλ is the linewidth of the resonance and n2 is the
refractive index of the surrounding media. The Q-factor
is exponentially dependent on the microcavity size com-
pared to the wavelength as well as the refractive index
contrast between the inside and outside of the sphere.
Absorption and scattering in the material as well as sur-
face roughness can substantially reduce the Q-factor. LCs

are usually transparent to visible light, so that the absorp-
tion does not contribute much. The surface of a droplet
created by surface tension is also typically very smooth.
The largest contribution to the decreasedQ-factormay be
contributed to light scattering on thermal fluctuations of
the local director orientation [18].

The WGMs can be in general observed and mea-
sured in two ways. The first one is by coupling the
cavity through an evanescent field to an optical wave-
guide, for example, a tapered fibre or prism [19,20].
When the wavelength of the external light matches to
one of the optical modes in the cavity, the light is
coupled out of the waveguide and reduces its transmis-
sion. This method requires the optical waveguide to be
positioned closer to the cavity than the wavelength of
the light. The second method to observe WGMs is to
dope the cavity material with a fluorescent dye and
excite it with an external laser. Due to the Purcell effect
[19], the spontaneous emission from the dye is
enhanced at wavelengths corresponding to the optical
modes. Therefore, in the emission spectrum from a
WGM cavity, characteristic spectral lines appear. By
using a pulsed excitation laser, the dye-doped WGM
cavities can also be operated in lasing regime. Using a
nanosecond pump laser and cavity with several mM
concertation of an organic dye, the minimum required
cavity Q-factor to achieve lasing [21] is approximately
104. For a sphere with n1 = 1.7 in water environment
n2 = 1.33, the minimum size of the cavity to achieve
lasing calculated using (2) is ~10 µm.

2.1. WGMs in nematic droplets

WGMs were studied in nematic droplets with home-
otropic anchoring, which is the simplest geometry for
LC droplets. In this case, the director configuration is
radial, meaning that the director is pointing in the
radial direction in every point of the droplet and
forms a radial hedgehog defect at the centre of the
droplet, visible as a dark spot (Figure 1(a)). When
observed under crosses polarisers, a typical cross is
observed (Figure 1(b)). The droplets were made by
mechanical mixing of a small quantity (~1%) of
nematic liquid crystal E12 with PDMS polymer,
which was left to polymerise at room temperature,
making a solid matrix for stabilising the droplets.
Alternatively, the droplets were dispersed in water con-
taining 4 mM of sodium dodecyl sulfate (SDS) to
achieve homeotropic anchoring. The droplets made
by this method are polydispersed, with sizes ranging
from 1 µm to 50 µm (Figure 1(c)). Because of surface
tension, they have almost perfect spherical shape and
smooth surface. Before mixing with PDMS or water,
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the LC was doped with 0.1 wt% fluorescent dye. In
general, almost any fluorescent dye soluble in LC can
be used. When a droplet is illuminated with a laser
matched with the absorption of the dye, part of the
light is coupled to the WGM circulating in the droplet
(Figure 1(d)). A single droplet was illuminated by a
focused 532 nm laser beam near its edge (Figure 1(e)).
A bright spot of fluorescent light was observed at the
point of the laser beam as well as on the opposite side
of the droplet corresponding to the circulating light
(inset of Figure 1(f)). In the spectrum of the light
emitted by a single droplet, sharp spectral lines can
be observed (Figure 1(f)). Since the droplet is birefrin-
gent, transverse-electric (TE) and transverse-magnetic
(TM) light polarisations experience different refractive
indices. In isotropic sphere, the two polarisations have
almost the same wavelength, however, here we need to
write two separate Equations (1). The TE polarisation
has the electric field parallel to the surface of the
droplet, therefore, it is perpendicular to the nematic
director and experiences ordinary refractive index,
while TM polarisation is perpendicular to the droplet
surface, so along the director and experiences extraor-
dinary refractive index. For (q = 1), we have
2πrno ≈ lTEλTE and 2πrne ≈ lTMλTM. By calculating
exact solutions of the modes in a nematic droplet, we

see that the TE sees only ordinary refractive index,
whereas TM modes couple both ordinary and extraor-
dinary indices [22]. In Figure 1(f) two sets of modes are
visible. The modes with sharper spectral lines are first
radial TM modes (q = 1) and the ones with broader
lines are second radial TM modes (q = 2). TE modes
are not observed, since they have too low refractive
index contrast and therefore too low Q-factor.

When the dye-doped droplets are pumped with a
pulsed laser above certain energy threshold, lasing can
be achieved [23]. Only WGM which have high enough
Q-factor and are in the wavelength region where the dye
has the highest gain, start to lase (Figure 1(g)). In this case
only few first radial TM modes are lasing. Their intensity
is much higher than the fluorescent background.

2.2. Electric tuning of the modes

One of the greatest advantages of LCs to make optical
components in comparison with the solid-state coun-
terparts is the large tunability, especially with electric
field, which simplifies integration with existing electric
circuits. Also, solid-state optical cavities can be tuned
by using electro-optic effect, albeit to a much less
amount. For example, a lithium niobate microring
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Figure 1. (Colour online) (a) Bright-field image of a radial nematic droplet and (b) the same droplet under crossed polarisers. (c) Colour
image of dispersion of nematic droplets under crossed polarisers. (d) Principl of WGMs in nematic droplets and (e) 3D rendering of light
excitation and circulation. (f) Spectrum of light from a droplet below lasing threshold and (g) above lasing threshold (inset). False colour
image representing the fluorescent intensity of a droplet illuminated by a laser at the position of the cross.
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resonator was tuned by 0.006% by applying electric
field of 1.5 V/µm [24]. Another way of tuning the
modes is to embed a solid state-resonator in a LC
material. The tuning only affects the evanescent field,
which represents only a small fraction of the total
electric field of the WGMs, making the tunability
much lower than when having the liquid crystal inside
the cavity [22,25]. For example, a tunability of 0.01%
was achieved when applying 2 V/µm [26].

The electric field effect in radial nematic droplets
have been studied before [27]. As the field is applied,
the molecules of the positive dielectric anisotropy LC
start to rotate in the direction of the field. There is
almost no distortion very near the surface because of
the strong anchoring and radial hedgehog point defect
is still present in the centre (Figure 2(a)). The transi-
tion from completely radial configuration to this dis-
torted configuration is continuous and without
hysteresis, therefore, this range is used for the tuning
of the WGMs. When higher field is applied, the struc-
ture of the droplet is transformed into a + 1/2 defect
ring circulating the droplet at the surface and an almost
uniform director configuration in the centre (Figure 2
(a)). This transition happens at certain voltage thresh-
old and it is discontinuous and has a hysteresis when
the field is reduced. In the experiments, a 16 µm dro-
plet was subjected to a continuously increasing alter-
nating electric field up to 2.1 V/µm at 50 kHz and
WGM spectra were recorded (Figure 2(c)). The same
as in Figure 1(f), first and second radial TM modes are
visible. First radial modes are visible as thinner lines
due to higher Q-factor, while second radial modes are
visible as thicker lines. At zero field, the modes experi-
ence the extraordinary refractive index, but when the

electric field is applied, the molecules rotate and the
modes experience lower refractive index. This
decreases the optical path length and the modes
undergo a blue shift. This is the case for both first
and second radial modes. The first radial modes, how-
ever, experience smaller shift, since they are located
closer to the surface of the droplet where the distortion
of the director is smaller because of strong surface
anchoring. The tunability is also dependent on the
size of the droplets, since in smaller droplets, the effect
of the anchoring is more important, meaning that the
tunability is lower. Tunability as high as 20 nm (3%) in
17 µm diameter droplet at 2.6 V/µm was achieved. This
is one to two orders of magnitude larger compared to
other types of electrical tuning [24,26,28,29].

2.3. WGMs in other LC droplets

In principle,WGMs can be achieved in dropletsmade out
of almost any LC, including smectic, ferroelectric, cho-
lesteric, discotic and more exotic phases. The most
important condition is that the refractive index of the
LC should be larger than the surroundings. Further, the
LC should be transparent and does not contain too many
defects, which scatter light. For example, ferroelectric
liquid crystals (SmC*) are known for their fast switching
under applied electric field and could be a good candidate
as a material for droplets used for WGM microcavities
instead of nematic LCs. We have achieved lasing in a
droplet of Nile red-doped ferroelectric liquid crystal
(Kingston Chemicals) in PDMS (Figure 3). The produced
droplets are, however, not completely spherical and their
internal structure is also in most cases full of defect lines.
Because of non-spherical shape, each lasing line is split in

(a) (c)

(b)

Figure 2. (Colour online) (a) Nematic director at small and large electric field in relation to the circulating WGMs. (b) A nematic
droplet at zero and 0.6 V/µm applied in plane imaged under crossed polarisers. (c) Spectrum of WGM from a single droplet when
the electric field is increased up to 2.1 V/µm.
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more lines with different azimuthal mode number m.
WGMs have been observed by other groups in SmA
droplets [30] and tubes [31].

2.4. Temperature tuning of the modes

Another way of tuning WGMs is by changing the
temperature [32], which changes the refractive index
and size of the cavity. For solid state-materials, the
temperature tunability is quite small, in the order of
10–300 pm/K [33,34]. However, for LCs the refractive
index is highly temperature dependent and enables
large tunability. WGMs in a 24 µm diameter E12 dro-
plet in SDS solution in water was studied as tempera-
ture was increased from room temperature to above
the clearing point of the LC. In the spectrum of the
light emitted for a droplet, several distinct spectral lines
are observed, which shift at different rates and in
different directions (Figure 4). There are four sets of
TM modes with radial mode numbers 1–4 and two sets
of TE modes with radial mode numbers 1 and 2. The
TM modes shift to shorter wavelengths, while the TE
modes shift to longer wavelengths (Figure 4(a)). The
TM polarisation is associated with extraordinary
refractive index, which decreases with temperature;
and the TE polarisation is associated with ordinary
refractive index, which on the other hand increases
with temperature. The experimental results agree well
with calculation of the modes [16] taking into account
LC refractive index change with temperature (Figure 4
(b)). The shift in TM WGMs is approximately 15 nm
for the temperature change from 25°C to 55°C.

When the temperature is approaching the nematic to
isotropic transition (59°C), the modes begin to shift in a
more chaotic way, since the director configuration is chan-
ging and the LC is partially melting. Above ~59°C, the
transition into isotropic phase is complete and both TE
and TM modes have the same refractive index and are
visible as mode pairs.With further increasing temperature,

the modes do not experience any large shift any more,
since the isotropic liquid does not have large temperature
dependence of the refractive index.

Instead of changing the temperature of the whole
sample, individual droplets were heated by using a
focused infrared laser beam at 1064 nm. The tuning
of the WGMs up to 6 nm was achieved when illumi-
nating a droplet with 140 mW of optical power.

Due to their high Q-factors, solid WGM cavities are
used as very precise temperature sensors [33,34]. LCs
have very large dependence of refractive index upon
temperature, therefore, they are even more suited to the
measurement of the temperature. On the other hand, this
is also a disadvantage, since LCmicrooptical components
need good temperature control for their stable operation.
WGMs in LC droplets can also be used to study LC phase
transitions and surface anchoring. Both can considerably
change optical properties and alter the wavelength or
Q-factors of WGM. For example, smectic-A (SmA) to
nematic phase transition was studied by measuring the
quality factor in droplets of 8CB [30].
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Figure 3. Lasing spectrum from a SmC* droplet (inset) image
of laser light emitted by the droplet.
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Figure 4. (a) Spectrum of light emitted by a nematic droplet as
a function of temperature. (b) Calculated positions of WGMs
when taking into account temperature dependence of the
refractive index of the LC.
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2.5. Chemical sensing

Both WGMs and LC droplets have been separately
extensively studied for chemical sensing. WGM fre-
quencies are sensitive to the refractive index change
near the surface of the cavity. Therefore, the change on
either side of the surface, such as molecules binding,
can be detected. Due to extremely high Q-factors, the
WGM cavities are incredibly sensitive and can detect
minute amounts of analytes, single viruses and down to
single molecules [35,36].

LCs in the form of thin layers with one surface in
contact with water have been also used as sensitive
sensors [37]. The surface anchoring can be changed
by absorption of molecules to the surface. Because of
long range interactions in LCs, the anchoring also
affects the bulk liquid crystal, so the changes can be
easily observed under a polarising microscope.
Changes in surface anchoring can be also be studied
in LC droplets. The structural transitions in droplets
[38] have been used for detection of various analytes,
including extremely small concentrations of endotoxins
[39], proteins [40], bacteria and viruses [41] and iden-
tification of cancerous cells [42]. The advantage of
droplets is, that they do not need any mechanical sup-
port or surface treatment, they are small and can be
introduced into a microfluidic chip. In most of the LC
chemical sensors, the structural transitions are
observed under an optical/polarisation microscope,
which does not enable detection of small changes in
anchoring. Therefore, it is beneficial to measure the
orientational changes in LCs by employing WGMs.

In our demonstration, we have used Nile red fluor-
escent dye-doped droplets of a nematic LC 5CB dis-
persed in water. A single droplet was pumped by a
pulsed green laser (532 nm) to achieve lasing and at
the same time, held in place in a microfluidic channel
by using an infrared optical tweezers (1064 nm). Water
containing different concentrations of SDS surfactant
was flown through the microfluidic channel and the
lasing spectra was observed in real time. When the SDS
concentration was increased from 0 to 2 mM, the
anchoring changed from planar to homeotropic and
the droplet experienced a continuous transition from
a bipolar to a radial configuration (Figure 5(a)). The
lasing spectrum also changed starting at 0.2 mM and
after 0.6 mM remained constant (Figure 5(b)). In pure
water, when the droplets are in a dipolar configuration,
the spherical symmetry in the droplet is broken, there-
fore, the different azimuthal modes are not degenerate
and the lasing spectrum contains four lasing peaks split
into a number of subpeaks with a separation of 0.5 nm
(Figure 5(c)). At concentrations higher than 6 mM, the

director configuration near the surface, where the
WGMs are located, is almost radial, so the lasing spec-
tra (Figure 5(d)) is identical to the one in radial con-
figuration (Figure 1(g)).

The major advantage in using the laser emission to
determine droplet configuration is simplified and faster
readout. There is no need of imaging, which is slow,
requires an optical microscope and image analysis. On
the contrary, spectral fingerprint can be measured in
fast moving droplets, for example, in a microfluidic
channel. The pumping and detection can be carried
out through a single optical fibre. Further, instead of
only identifying if the droplet is in bipolar or radial
configurations, intermediate states can be identified, so
smaller structural changes and therefore concentrations
can be detected. For our example, the WGMs start to
change at already 0.2 mM, while the radial structure is
formed only above 1 mM.

3. Bragg cavities

A one-dimensional (1D) periodic structure or 1D
photonic crystal, also known as Bragg reflector, has a
photonic bandgap and reflects light in a wavelength
region corresponding to its periodicity. Bragg reflectors
are widely used as mirrors, distributed Bragg reflector
lasers, filters, etc. A convenient way to make a Bragg
reflector or a laser is employing LCs, including a vari-
ety of liquid crystal phases such as cholesteric phase,
chiral smectic phase, cholesteric elastomers and poly-
mers and blue phases [8,43]. The periodic structure is
formed spontaneously and can be tuned. By adding a
fluorescent dye as gain material and applying external
optical pumping, lasing can be achieved. Lasing occurs
at the short or long wavelength edge of the photonic
bandgap. However, if a thin defect layer is embedded
into the LC, then the lasing occurs inside the photonic
bandgap. The photonic bandgap exists in between
λ1 = nop and λ2 = nep, where p is the helical pitch
length.

2D and 3D photonic crystals confine light also in the
other dimensions. These structures are, for example,
made of periodic holes in a thin substrate or regular
assemblies of small spherical particles know as opals.
Colloidal assemblies in LC are also attractive candi-
dates for photonic crystals [1,7]. 3D photonic crystals
have a photonic bandgap that is direction dependent
and if the refractive index contrast of the structure is
not high enough, there is no complete bandgap [44].
Lasing has been achieved in a 3D photonic crystal [45],
however, the assembly of such lasers is extremely com-
plicated and time consuming. Lasing in a 3D photonic
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crystal has been also achieved in a blue phase [46], with
the lasing with different wavelengths being emitted in
three orthogonal directions.

Another way of making a 2D or 3D photonic bandgap
structure is to use concentric rings for a planar structure
or concentric shells for a spherical onion structure. This
structures are basically composed of a 1D photonic
reflector wrapped around the central point. Light going
out from this central point is reflected back by the
periodic structure and is confined in the centre. A num-
ber of 2D circular Bragg structures have been realised in
2D using standard lithography and lasing has been
demonstrated [47]. However, 3D onion Bragg cavities
are difficult to manufacture [48,49] and lasing has not
been achieved in these solid-state structures.

3.1. CLC droplet omnidirectional laser

CLC droplets with planar anchoring are a natural candi-
date for a Bragg onion cavity [50]. Their spherulite
structure has been studied already many years ago
[9,51]. Recent simulations show the detailed structure
of cholesteric droplets [52] and existence of a rich zoo
of free standing topological knots [15]. To observe the
structure of CLC droplets, a mixture of a nematic liquid
crystal and chiral dopant was mixed to produce a 2.2 µm
pitch. This mixture was dispersed in glycerol by mechan-
ical mixing. The periodic structure in the radial direction

is clearly visible (Figure 6(a and,b)), as well there is a
double helix [52] visible as a dark line extending from the
centre to the surface of the droplet. To make a laser,
MLC-7023 liquid crystal was mixed with 25.5 wt% S-811
chiral dopant and 0.2 wt% fluorescent dye Nile red. This
mixture is similar to the ones used for planar CLC lasers
[8]. The droplet was uniformly illuminated through a
20× objective with a 532 nm Q-switched laser with
repetition rate of 200 Hz. The laser light was generated
along the axis of the helical twist and was therefore
propagating out of the droplet in all directions
(Figure 6(c and, d)). The laser emission was visible as a
bright spot in the centre of the droplet (Figure 6(e)). In
the spectrum of the emitted light, there was a single laser
line, with linewidth of 0.1 nm, located at long wavelength
edge of the photonics bandgap, indicating band-edge
lasing (Figure 6(e)). The lasing wavelength is only very
slightly dependent on the droplet size. Threshold beha-
viour in the pump output curve further confirms lasing
was indeed observed. The lasing threshold of a 40 µm
diameter droplet is 1.7 mJ/cm2 or 20 nJ. The highest
achieved output power of a single droplet is 0.05 mW.
The smallest droplets still lasing had a diameter of 15 µm.
This size could be further decreased by using higher
birefringence LC, using higher concentration of the
fluorescent dye and shorter lasing wavelength. The polar-
isation of the output laser light was circular. Lasing
wavelength, threshold energy density, linewidth and
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Figure 5. (Colour online) (a) Nematic director configurations (top), bright-field microscope images (middle) and crossed polarisers
images (bottom) of droplets when subject to increasing concentration of SDS surfactant. (b) Spectrum of lasing of WGMs in time of
a single droplet in a microfluidic channel when solutions of increasing concentrations of SDS are added. (c) Lasing spectrum in pure
water and (d) in high concentration of SDS.
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polarisation are all comparable with a planar CLC laser
made of the same mixture and thickness equivalent to
the diameter of the droplet.

By measuring the laser output as a function of angle,
we have found that the emission from the droplet is
very uniform in all directions (Figure 6(f)), as well the
lasing wavelength is nearly constant for different direc-
tions. This is expected, since the CLC droplets are
almost spherically symmetric. Due to omnidirectional
emission, the CLC droplet lasers are also referred to as
3D lasers [50]. The lasing was not specifically measured
in the direction of the defect line. It would be to expect
that there is no lasing emission in that direction.

3.2. Temperature tunability

CLC lasers are known to be highly tunable [53,54] by
various means such as position dependent pitch,
temperature, light and electric field. In some cases,
emission across the entire visible spectrum was
achieved from a single device. Here, the tuning of
droplet CLC laser was carried out by changing the
temperature. The lasing wavelength was tuned by
almost 50 nm when changing the temperature by

just 14°C (Figure 6(g)). The spectral shift was almost
linear with temperature, continuous and completely
reversible. On the contrary, in planar CLC lasers the
tunability by temperature is in most cases non-con-
tinuous, containing discrete steps in the lasing wave-
length [55]. Because of planar alignment of the two
confining surfaces, there is a one-half-integer number
of turns in the LC layer. Therefore, the pitch changes
in steps with temperature. In CLC droplets, the
anchoring at the surface of the droplet is planar
degenerate, which enables continuous rotation of
the director at the surface.

Temperature tunability can also be a drawback if the
lasers are intended to be used as light sources with
fixed wavelength. This can be partially solved by
using a LC with smaller temperature pitch length
dependence, or by using a polimerisable CLC [56].

4. Combination of WGMs and Bragg modes

4.1. Simultaneous lasing of WGMs and Bragg
modes

WGM lasing was demonstrated in nematic droplets,
but droplets of cholesteric liquid crystal can also be
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used for this purpose as far as the refractive index
contrast and droplet size are large enough. Therefore,
both WGM and Bragg lasing can occur simultaneously
(Figure 7(a)). The two lasing mechanism do not com-
pete greatly for the available gain, since WGMs are
located near the surface, while Bragg lasing has the
highest intensity at the droplet centre, enabling effi-
cient lasing of both. For the Bragg lasers in the pre-
vious section, a low refractive index LC (ne = 1.53,
no = 1.46) and a high refractive index external medium
(glycerol, n = 1.47) were used to avoid WGM lasing. By
using higher refractive index LC (ne = 1.77, no = 1.51),
both lasing mechanisms can be observed (Figure 7(b)).
The WGMs are visible as a ring on the surface of the
droplet and the Bragg lasing is coming from the centre
of the droplet. In the spectrum, several peaks corre-
spond to WGMs and a single peak at 610 nm corre-
sponds to Bragg lasing. Thresholds for both Bragg and
WGM lasing are dependent on droplet size and are
lower in bigger droplets because of higher Q-factors
(Figure 7(c)). The threshold for WGMs decreases faster
with inreasing droplet diameter than for Bragg lasing.

The droplets below 25 µm have lower threshold for
Bragg lasing, whereas above 25 µm the threshold is
lower for WGMs. The smallest droplet diameter for
Bragg lasing is 15 µm and for WGM lasing is 19 µm.
Therefore, by changing the droplet size, the relative
lasing of the two mechanisms can be controlled.
Instead of using a small refractive index contrast to
inhibit WGM lasing, scattering particles could be
absorbed to the surface. While WGMs are very sensi-
tive to the surface, Bragg modes are not. On the con-
trary, if wanting to inhibit Bragg lasing, temperature
tuning can be used to push the bandage out of the gain
region or by using an electric filed to unwind the helix.

4.2. Ring modes lasing

In cholesteric droplets, we can achieve lasing of higher
Bragg modes that have also angular momentum. By
using lower concentration of chiral dopant, the PBG
can be pushed to the infrared part of the spectrum, so
that it is out of the gain region of the dye and the
droplet does not lase any more. This is true just for
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light with the incidence along the helical axis.
Following the Bragg’s law, at smaller angles, light
with shorter wavelengths is reflected from the periodic
structure. In the droplet, this means that the red fluor-
escent light from the dye is not any more reflected in
radial direction, but instead reflects multiple times
from the cholesteric layers at a smaller angle and so
circulates in the droplet (Figure 8(a)). This is similar to
WGMs, where the light is multiply reflected from the
surface and circulates around the droplet. The differ-
ence in cholesteric droplet is that the light is not
reflected because of total internal reflection, but
because of Bragg structure. The light also does not
circulate close to the surface, but in the interior of the
droplet. A dye-doped CLC mixture with the centre of
the photonic bandgap positioned at 770 nm was used.
When a droplet was pumped by a pulsed laser, a ring of
light was clearly visible in the interior of the droplet
(Figure 8(b)). In the spectrum, several equally spaced
laser lines were observed. If using even longer pitch,
the ring of light becomes larger also requiring the
droplet to be larger in order to support these modes.
With longer pitch also, the number of modes increases.

5. Conclusions and future prospects

As demonstrated here, liquid crystal droplets can sup-
port a variety of optical modes and can be used as
optical cavities and lasers. The structures in the dro-
plets are self-assembled because of elastic forces in LCs,
which is a great advantage over solid-state optical
components, since no complicated fabrication methods
are necessary. The second advantage is large tunability
and sensitivity to external stimuli.

In this work, droplets were made by mechanical
mixing which led to very polydispersed droplets. The

lasing wavelength of CLC droplets is greatly indepen-
dent on the droplet size, but WGMs are highly depen-
dent on size. Microfluidics have been employed before
to produce monodispersed LC droplets [57–59] or
shells [60] and the same method could also be
employed for all LC droplets used here. Both WGM
and Bragg lasing are not limited by spherical droplets.
For example, WGMs were demonstrated in a variety of
geometries, including toroids, cylinders and bottle cav-
ities. LCs have been also shaped in different geometries
such as shells [14,61], tactoids [9], rods [62,63] and
fibres [64]. Lasing and light waveguiding has been
demonstrated smectic self-formed fibres [31]. Instead
of droplets entirely filled with LC, also shells of LC [14]
could have interesting applications as optical cavities.
WGMs are confined close to the surface, so they are
ideal to study thin LC shells as well the thin shells
enable faster tunability and better sensing. CLC shells
have been used to modify the emission spectrum of a
material embedded in the droplet [65] as well lasing
has been demonstrated within them [60].

Tuning of CLC has been here achieved only by
changing the temperature, however, a more convenient
way is to use electric field. For example, tuning up to
20 nm has been achieved by applying 0.175 V/µm
electric field to CLC droplets [66]. Phototuning of
lasing in CLC droplets has been demonstrated by
including a chiral molecular switch which undergoes
photoisomerisation when illuminated [60,67]. Ultrafast
all-optical tuning can be achieved by using a femtose-
cond laser via a coherently excited optical Kerr effect
[68] or via stimulated emission depletion [69]. Another
way of tuning is by using mechanical deformation of
LC droplets by stretching the polymer matrix [32,70].
Optomechanic tunable cavities could be made by using
LC elastomer particles, which change shape when
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illuminated [62,63]. Mechanic tuning by using flow can
be even faster than electric tuning, achieving submilli-
second response [71].

By polymerising the liquid crystal itself, a more
mechanically stable microlaser can be made useful,
for example, in biological imaging. After polymerisa-
tion, the lasers cannot be tuned any more and are
insensitive to temperature changes. Before the poly-
merisation, they can be tuned by temperature to a
particular frequency and then polymerised.
Polymerised CLC droplet lasers have been already
demonstrated and show good stability and lasing [56].
In a similar fashion also, WGM lasers could be
polymerised.

In all the experiments in this work, the excitation and
collection of light was done in far field by using a
microscope. In order to integrate LC cavities to more
complex optical system, a different light delivery
approach should be employed. For example, evanescent
field coupling of WGMs in a nematic droplet with a
planar waveguide has been demonstrated [20]. Coupling
the resonators with waveguides could lead to efficient
extraction of light from cavities, as well as a potential to
use them as filters and routers. Further, Bragg lasers
could be interfaced with an end of an optical fibre.
The fibre can be brought close to the surface of the
droplet or even inserted into the droplet towards its
centre, where there is the highest laser intensity. For
example, structures of CLC droplets pierced by cellulose
fibres have been studied before [72], but optical proper-
ties have not been characterised.

Here, we have only discussed optical modes in LC
droplets in an isotropic fluid or solid. However, similarly
also optical modes in colloids embedded in LC could be
used. That is an inverted system to the LC droplets. A
wide variety of very complex self-assembled colloidal
structures exist in this systems, which could be used
for this purpose [1–5]. Assemblies of colloids could be
used as tunable self-assembled arrays of cavities such as
coupled resonator optical waveguides (CROWs) [73].
Further, colloidal optical cavities could be also optically
coupled to optical fibres to make optical circuits held
together by elastic forces in LC [74,75].

CLC droplets are not useful only as lasers, but also
as omnidirectional selective reflection elements [76–
78]. Because of spherical symmetry the Bragg reflection
is the same in all directions in contrast to planar CLC
layers. This can lead to interesting reflection patterns
[77]. The interaction of light with cholesteric particles
creates a variety of chirality-induced optical forces and
torques in a laser trap [79–81].

LCs are already widely applied to biomedical appli-
cations [82]. LC droplet based light sources can be

further applied to biomedical imaging, therapy and
diagnosis [21,83]. WGMs in LC droplets were used
only for sensing of a simple surfactant. Further inves-
tigations are required on more sophisticated systems to
increase the specificity of the chemical sensing. For
example, by using WGM detection of structural
changes in droplets that already have extremely low
detection limit for endotoxins [39] could be decreased
even further. CLC hemispherical lasers have been also
used as a gas sensors [84].

A number of applications of the LC cavities is
anticipated such as holography, telecommunications,
optical computing, imaging, ultrasensitive biosensing,
temperature and displacement measurements and even
as a material for paints [85,86] or light sources that
emit coherent light in all directions.
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